Universal formula for the Hilbert series of minimal nilpotent orbits
نویسندگان
چکیده
منابع مشابه
Series of Nilpotent Orbits
We organize the nilpotent orbits in the exceptional complex Lie algebras into series and show that within each series the dimension of the orbit is a linear function of the natural parameter a = 1, 2, 4, 8, respectively for f4, e6, e7, e8. We observe similar regularities for the centralizers of nilpotent elements in a series and graded components in the associated grading of the ambient Lie alg...
متن کاملGeometric Quantization of Real Minimal Nilpotent Orbits
In this paper, we begin a quantization program for nilpotent orbits OR of a real semisimple Lie group GR. These orbits arise naturally as the coadjoint orbits of GR which are stable under scaling, and thus they have a canonical symplectic structure ω where the GR-action is Hamiltonian. These orbits and their covers generalize the oscillator phase space T R, which occurs here when GR = Sp(2n,R) ...
متن کاملWeighted Projective Spaces and Minimal Nilpotent Orbits
We investigate (twisted) rings of differential operators on the resolution of singularities of an irreducible component X of Omin ∩ n+ (where Omin is the (Zariski) closure of the minimal nilpotent orbit of sp2n and n+ is the Borel subalgebra of sp2n) using toric geometry, and show that they are homomorphic images of a certain family of associative subalgebras of U(sp2n), which contains the maxi...
متن کاملPrincipal Nilpotent Orbits and Reducible Principal Series
Let G be a split reductive p-adic group. In this paper, we establish an explicit link between principal nilpotent orbits of G and the irreducible constituents of principal series of G. A geometric characterization of certain irreducible constituents is also provided.
متن کاملQuantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits
Let G be a complex reductive group. We study the problem of associating Dixmier algebras to nilpotent (co)adjoint orbits of G, or, more generally, to orbit data for G. If g = 0 + n + in is a triangular decomposition of g and 0 is a nilpotent orbit, we consider the irreducible components of 0 n n, which are Lagrangian subvarieties of 0. The main idea is to construct, starting with certain "good"...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2017
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/13819